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Kramers-Kronig analysis is commonly used to estimate the optical properties of new materials. The analysis
typically uses data from far infrared through near ultraviolet (say 40–40 000 cm−1 or 5 meV–5 eV) and
uses extrapolations outside the measured range. Most high-frequency extrapolations use a power law, 1/ωn,
transitioning to 1/ω4 at a considerably higher frequency and continuing this free-carrier extension to infinity.
The midrange power law is adjusted to match the slope of the data and to give pleasing curves, but the choice of
power (usually between 0.5 and 3) is arbitrary. Instead of an arbitrary power law, it is better to use x-ray atomic
scattering functions such as those presented by Henke and co-workers. These basically treat the solid as a linear
combination of its atomic constituents and, knowing the chemical formula and the density, allow the computation
of dielectric function, reflectivity, and other optical functions. The “Henke reflectivity” can be used over photon
energies of 10 eV to 34 keV, after which a 1/ω4 continuation is perfectly fine. The bridge between experimental
data and the Henke reflectivity as well as two corrections made to the latter are discussed.
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I. INTRODUCTION

Kramers-Kronig [1–6] analysis, of—for the most part—
reflectance data, is often used to estimate the optical conduc-
tivity, dielectric function, sum rules, and other optical functions
for new materials. Many reports of Kramers-Kronig analysis
of reflectance have appeared, spanning more than 50 years [7],
with studies of metals [8–15], pure and doped elemental
solids [16–18], organic conductors [19–21], charge-density-
wave materials [22–24], conducting polymers [25–27], cuprate
superconductors [28–38], manganites [39–41], pnictides
[42–48], heavy fermions [49], multiferroics [50–53], topolog-
ical insulators [54–56], and many others. In addition, a number
of methods papers have appeared [57–64].

The experimenter typically has data from far infrared
through near ultraviolet, covering, say, 5 meV–5 eV (40 to
40 000 cm−1). This is a reasonably wide bandwidth, but the
Kramers-Kronig integral extends from zero to infinity, so that
extrapolations need to be made outside the measured range.
The high-frequency extrapolation is especially problematic
and can cause significant distortions to the conductivity over
the entire measured range, with consequences for sum rules as
well. The approach used by most is to extend the reflectance
with a power law, R ∼ 1/ωn, transitioning to R ∼ 1/ω4 at a
considerably higher frequency and continuing this free-carrier
extension to infinity. The midrange power law is adjusted to
match the slope of the upper end of the data and to give pleasing
curves, but the choice of power (something between 0.5 and
3) is arbitrary.

Other approaches have been put forward. One successful
method is to carry out ellipsometry on the sample over the
high-energy part of the interesting spectral range and extract
the (temperature-dependent if necessary) complex refractive
index over that range. Then one can calculate an oscillator-
model extrapolation that forces the Kramers-Kronig-derived
refractive index to agree with ellipsometry over the range of
overlap [65–71]. A second approach [63] consists of fitting
the spectrum with a sum of a very large number of narrow
contributions to the dielectric function. The functions can be
Lorentz oscillators, triangles, or some other function for the
imaginary part and the Kramers-Kronig-derived counterpart

for the real part. The number of these functions is equal to or
nearly equal to the number of data points, so that an excellent
fit is easy to obtain; indeed some parameters need to be fixed.
The model dielectric function then represents the properties of
the material. No actual integral of the reflectance is computed.
This approach is especially effective for the case of a thin film
on a substrate [63,64] or a complex device structure [72].

This paper describes an extrapolation method for conven-
tional Kramers-Kronig analysis that uses x-ray atomic scat-
tering functions developed by Henke and co-workers [73,74]
to generate the high-frequency reflectance of a material. The
method basically treats the solid as a linear combination of its
atomic constituents. Knowledge of the chemical formula, the
density, and the energy-dependent scattering function enables
the computation of the dielectric function, the reflectivity, and
other optical functions. The “Henke reflectivity” is computed
for photon energies of 10 eV–34 keV, after which a 1/ω4

continuation is perfectly fine. This paper also discusses the
bridge between experimental data and the Henke reflectivity
as well as two corrections made to the latter.

A. Kramers-Kronig relations

The Kramers-Kronig relations [1,2] are a consequence of
our experience that observable effects are causal, i.e., that the
cause precedes the effect. This notion seems sensible and it is
a component of most parts of physics. The Kramers-Kronig
integrals are derived in a number of textbooks [3–6], and have
been discussed by many authors [60,61,75–80]. The original
derivations by Kramers and Kronig relied on model dielectric
functions [81]; however, the subject is mostly approached
by considering integrals on the complex frequency plane
and using Cauchy’s integral theorem [82]. This approach,
combined with the fact that the material’s response functions
are either even or odd as a function of the frequency and a
consideration of the pole that occurs in conductors when the
frequency ω is zero, lead to the following relations for the
dielectric susceptibility χ = χ1 + iχ2:

χ1(ω) = 2

π
P

∫ ∞

0
dω′ ω

′χ2(ω′)
ω′2 − ω2

(1)
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and

χ2(ω) = σdc

ω
− 2ω

π
P

∫ ∞

0
dω′ χ1(ω′)

ω′2 − ω2
, (2)

where σdc is the dc conductivity andP means “principal value.”
There are many complex optical functions in addition to

the susceptibility: dielectric function, conductivity, refractive
index, etc.; there are Kramers-Kronig relations amongst them.
(Many can be obtained by substitution. For example, ε =
1 + 4πχ and σ1 = ωχ2 = ωε2/4π so that Eqs. (1) and (2)
may respectively be converted to an integral containing σ1(ω′)
that gives ε1(ω) and one containing σ2(ω′) to give σ1(ω).
Others require application of Cauchy’s theorem to the contour
integral along with statements about the behavior at very high
frequencies.

B. Kramers-Kronig analysis of reflectance

When one measures the reflectance, where reflectance here
means the single-bounce or single-surface reflectance, R(ω),
obtained over a range of far-infrared–ultraviolet frequencies
ω, one is taking the ratio of the reflected intensity or power
reflected from the front surface of the sample to the incident
intensity or power at each frequency. The sample is assumed
infinitely thick or sufficiently absorbing that no light from
the rear surface reaches my detector. Phase information is not
available.

The amplitude reflectivity, r(ω), the ratio of reflected
electric field amplitude to incident electric field amplitude,
does have a phase; indeed, I can write it as

r = ρ eiφ = 1 − N

1 + N
, (3)

where ρ = √
R is the magnitude of the reflectivity, φ is the

phase shift on reflection, and N = n + iκ is the complex
refractive index. Here, the phase is set by measuring the
reflected field vector relative to the incident vector at the
surface [83].

It would be nice to know φ, because I could invert Eq. (3)
to get

N = 1 − √
Reiφ

1 + √
Reiφ

, (4)

using the known φ and the measured reflectance.
Kramers-Kronig analysis is one way of estimating this

phase [5,57,84]. Consider

ln r = ln ρ + iφ. (5)

Here, ln ρ is the real part and φ is the imaginary part. The
reflectance must be causal, and hence so must be the log of
the reflectance. This requirement, plus the Hermiticity of r ,
r(−ω) = [r(ω)]∗ (which makes ρ even and φ odd) leads to

φ(ω) = −2ω

π
P

∫ ∞

0
dω′ ln ρ(ω′)

ω′2 − ω2
. (6)

Equation (6) is perfectly usable for numerical analysis, but
there is an improvement that can be made [5]. Consider

P
∫ ∞

0
dω′ 1

ω′2 − ω2
= 0. (7)

The negative area for ω′ < ω cancels the positive area for
ω′ > ω. Thus, I can add

+2ω

π
ln ρ(ω)P

∫ ∞

0
dω′ 1

ω′2 − ω2
(8)

to the right hand side of Eq. (6) without affecting the
phase. Collecting terms, replacing ρ with

√
R, and using the

properties of the log, I get

φ(ω) = −ω

π

∫ ∞

0
dω′ ln[R(ω′)/R(ω)]

ω′2 − ω2
. (9)

This modification has two advantages. First, if there are
errors in the calibration of the reflectance measurements, so
that the data for R are in error by a constant factor, the results
for φ are unaffected. [Of course, even if the scale error does
not affect the phase, it does affect R, and N , Eq. (4), depends
on both quantities.] Second, both numerator and denominator
of the integrand are zero when ω′ = ω. L’Hôpital’s rule shows
that the ratio does not diverge; hence the pole has been
removed.

C. Extrapolations

The alert reader will have noticed that the range of the
integral Eq. (9) is zero to ∞ and may wonder how one acquires
data over that entire range. The answer is that data are always
limited to a finite range of frequencies. Thus the user must use
extrapolations outside the measured ranges.

1. Low-frequency extrapolation

One must estimate the reflectance between zero and the
lowest measured frequency. In my opinion, the best approach is
to employ a model that reasonably describes the low-frequency
data. Such models include Drude for metals, Lorentz for
insulators, a sum of several Lorentzians, and sometimes a
Drude plus Lorentzians. Many other functions exist. When
a good fit of the model to the data is obtained, a set of
reflectance points may be calculated between zero and the
lowest measured frequency, using a spacing between points
similar to that of the lowest-frequency data, and combined
with the measured data.

Other approaches to the low-frequency extrapolations
include making an assumption that the reflectance is constant
to dc (as might be appropriate for an insulator) or using a
Hagen-Rubens formula, R = 1 − Aω1/2 (to describe a metal
at low frequencies). Other power laws can also be used. The
constant A is adjusted so the extrapolation goes through the
first few points and then, using a spacing between points
similar to that of the lowest-frequency data, a set of reflectance
points is calculated between zero and the lowest measured
frequency and combined with the measured data.

2. High-frequency extrapolation

The high-frequency extrapolation can be a source of major
error. It is good to use data from other experiments on
identical or similar samples if these exist. Moving to the
highest frequencies, one knows that in the limit as ω → ∞,
the dielectric function is mostly real and slightly smaller
than unity, following ε = 1 − ω2

p/ω2, where ωp is the plasma
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frequency of all the electrons in the solid and ω � ωp. Then
n = 1 − ω2

p/2ω2 and R = ω4
p/16ω4 ≡ C/ω4.

Typically [5], the region between the highest-frequency
data point and the transition to C/ω4 is filled with another
power law, R ∼ B/ωs , with s a free parameter. (s does not
have to be an integer.) The value of B is chosen so that the
power law joins smoothly to the data at the high-frequency
limit and then C is chosen for a smooth transition between
mid- and high-frequency extrapolations. The free parameters
are the exponent s and the frequency for the crossover
from ω−s to ω−4. The integrals in the extrapolation range
may be done analytically [5] and their contributions simply
added to the phase obtained by numerical integration of
Eq. (9) over the low-frequency extrapolation and the measured
data.

II. CONSEQUENCES OF POWER-LAW
EXTRAPOLATIONS

A. Silver metal

An example of “typical” reflectance data is shown in
Fig. 1. The data are the reflectance of silver as collected
by Palik [8,9,11–13,15,85–87]. The low frequencies are
supplemented by a Drude reflectance, based on resistivity ρ =
1.6 μ
 cm at 300 K. The main panel shows the reflectance
from 40–40 000 cm−1 (5 meV–5 eV), a range that can be
measured by many laboratories. One can see the high metallic
reflectance from far infrared to near ultraviolet, a sharp
and deep plasma edge around 32 000 cm−1 (4 eV), and the
beginning of transitions from the d bands to the conduction
band above this [5,9]. The inset shows the data over the entire
measured range, up to about 1 keV, along with a ω−4 power law.
The beginning of the core transitions seen in x-ray absorption
spectra [73] appear above 250 eV (inset).

I will now explore the Kramers-Kronig analysis of the
reflectance shown in the main panel of Fig. 1. The issue to

FIG. 1. (Color online) Reflectance of silver [8,9,11–13,15,85–
87]. The main panel shows the reflectance from far infrared to near
ultraviolet, whereas the inset shows the vacuum-ultraviolet and soft
x-ray reflectance along with a ω−4 power law.

FIG. 2. (Color online) Optical conductivity of silver from
Kramers-Kronig analysis of reflectance. Power-law extensions were
used, with exponents 0 < s < 4 and a crossover to ω−4 at 106 cm−1

(125 eV). The arrows in the figure give the trend with increasing s.

address is that the parameters, s and the frequency of transition
to C/ω4, are completely free and, hence, uncontrolled. It is fair
to ask the following: how much do they affect the outcome of
the analysis? A reason for choosing silver for this discussion
is that data for this material extend to 1000 eV (inset of Fig. 1).
Here, one can see additional interband transitions followed by
sharp core-level transitions. Note that the reflectance above
100 eV (∼120 000 cm−1) and away from the core transitions
is pretty close to a ω−4 power law. Kramers-Kronig analysis
of the full data will be compared to the results of the limited
data in the main panel.

After Kramers-Kronig integration of the reflectance, I can
compute the optical conductivity, σ1(ω), from the reflectance
and phase. The results are shown in Fig. 2. The intermediate
frequency range was extrapolated as ω−s with values for s of
0, 0.5, 1.0, 1.5, 2, 3, and 4. The crossover to ω−4 occurs
at 106 cm−1 (125 eV). There are considerable differences
amongst the results. The differences occur in both the free-
carrier optical conductivity at low frequencies and in the
transitions above 32 000 cm−1 (4 eV), which are from the
filled silver d levels to empty states in the conduction band.
Note that all curves come to the same dc conductivity,
σdc = 620 000 
−1cm −1. The figure shows only the first—or
lowest—5% of the conductivity spectrum, to illustrate the
variations in adequate detail. The various power laws give
a range of values for the conductivity in the d transitions
that differ by a factor of 3 or so. Other optical functions
have similar variation. The conductivity from the full-range
reflectance data is shown as the black dashed line, which covers
the typical-range calculation for s = 1.5.

The extrapolation strongly affects the outcome for the
partial sum rule for silver. This sum rule gives the number
Neff of electrons with effective mass ratio m/m∗ participating
in optical transitions at frequencies below ω as

m

m∗ Neff(ω) = 2mVc

πe2

∫ ω

0
σ1(ω′)dω′, (10)
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FIG. 3. (Color online) (m/m∗)Neff (ω) of silver from Kramers-
Kronig analysis of reflectance. Power-law extensions were used, with
exponents 0 < s < 4 and a crossover to ω−4 at 106 cm−1 (125 eV).
The arrow in the figure gives the trend with increasing s.

where m∗ is the effective mass, m is the free electron mass,
e is the electronic charge, and Vc is the unit cell volume
(or formula volume) [88]. Figure 3 shows the result of
evaluating Eq. (10) over 40–40 000 cm−1 (5 meV–5 eV) for
the conductivity data in Fig. 1. For a simple metal like
silver, the free carrier spectral weight is exhausted in the
midinfrared, and the function saturates at the number of
conduction electrons/atom (1 in the case of Ag) until the
interband transitions set in [5,9]. Depending on which power is
taken in the intermediate region, this analysis would conclude
that silver has between 0.4 and 2.4 free carriers per silver atom.
Even if the experimenter avoided the extremes and chose s

in the range 1 � s � 3, there would be a range of 0.6–1.3
for the number of electrons per silver atom. Note that the
full-range data and s = 1.5 both saturate at (m/m∗)Neff(ω) =
1.04, a quite satisfactory result [9]. The problem for the
experimenter is that full-range data are not usually available
and there is nothing that points to the correctness of this value
of s.

B. La2−xSrxCuO4

That this result is not unique to a free-carrier metal is
evident when I repeat the exercise for La1.85Sr0.15CuO4,
using data from Gao et al. [32] with ultraviolet results from
Tajima et al. [89]. The data over the typical range [32] cover
35–38 000 cm−1 (4.3 meV–4.7 eV); the ultraviolet results [89]
extend to 340 000 cm−1 (42 eV). The reflectance data are
shown in Fig. 4. One can see a broad non-Drude midinfrared
absorption with vibrational features superimposed. The band
centered at 10 000 cm−1 (1.2 eV) is the remnant of the
charge-transfer band of insulating La2CuO4. Higher-energy
electronic transitions may be seen in the visible and ultraviolet.

The next step is to carry out the Kramers-Kronig in-
tegration of the limited-range data and use the phase so
obtained to calculate the optical conductivity. Above the
highest frequency of the measured data, the reflectance was

FIG. 4. (Color online) Reflectance (at 300 K) of La1.85Sr0.15CuO4.

extrapolated as ω−s with values for s of 0, 0.5, 1.0, 1.5,
2, 3, and 4. The crossover to ω−4 occurred at 106 cm−1

(125 eV). The resulting optical conductivities are shown in
Fig. 5, along with a Kramers-Kronig-derived conductivity
that includes the vacuum ultraviolet data [89]. Although all
features appear, there is considerable variation in the spectral
weights, particularly above about 1.2 eV (10 000 cm−1). The
full-data spectrum falls midway between the results for s =
0.5 and s = 1. I find that the most worrisome feature is
the large variation in the charge-transfer band, because one
believes that the low-energy spectral weight is transferred
from the charge-transfer spectrum of the insulator and would
like to test this belief by measuring the spectral weight
transfer [31].

FIG. 5. (Color online) Optical conductivity (at 300 K) of
La1.85Sr0.15CuO4. Power-law extensions were used, with exponents
0 < s < 4 and a crossover to ω−4 at 106 cm−1 (125 eV). The arrows
in the figure indicate the trend with increasing s. The conductivity
obtained using the full-range data, including the vacuum-ultraviolet
region [89], is also shown.
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III. X-RAY ATOMIC SCATTERING FACTORS

A. Background

Photoabsorption in the x-ray region has been considered
by a number of authors [90–97]. It is described by an atomic
scattering factor, a complex function of energy or frequency:
f (ω) = f1(ω) − if2(ω). The approach used is to combine
experiment and theory and determine the imaginary part of the
scattering function, f2, for each atomic species. This quantity
has peaks or discontinuities at the absorption thresholds for
each electronic level and falls to zero as ω → ∞. The real
part f1 is obtained by Kramers-Kronig integration of f2;
f1 increases with frequency via a series of plateaus, each
approximately equal to the number of “free” electrons at
that photon energy, those electrons with binding energies less
than the photon energy. The limiting high-frequency value
is—except for relativistic corrections [73]—then the atomic
number Z.

In this work I use tables of the scattering functions presented
by Henke, Gullikson, and Davis [73] about 20 years ago. A
related website also exists [74] with the ability to calculate
optical properties, including reflectance. I find however that
better results are found if two adjustments are made, one to the
scattering functions f and one to the procedure of using these
functions to calculate reflectance. The first is that the functions
of Ref. [73] provide f2 from 10 to 30 000 eV but only have
f1 from 30 to 30 000 eV. I have redone the Kramers-Kronig
integrals of f2 to provide f1 also from 10 eV (80 000 cm−1),
extrapolating f2 ∼ ω2 at low frequencies and f2 ∼ ω−1 at high
frequencies.

To obtain the optical properties of a material, one makes the
assumption that the solid consists of a linear combination of
its component atomic constituents, with the dielectric function
determined by the scattering functions and the number density
of the constituents. The dielectric function is then

ε = 1 −
∑

j

4πnje
2

mω2

(
f

j

1 − if
j

2

)
, (11)

where the sum runs over atoms j at number density nj and
with complex scattering function f j . Note that this has the
right limiting high-frequency behavior; as ω → ∞, f j

1 → Zj

(with Zj here the atomic number), and f2 → 0, making
ε → 1 − ∑

j 4πnjZ
je2/mω2.

The complex refractive index is

N = √
ε (12)

and the reflectance R is calculated from the usual equation,

R =
∣∣∣∣1 − N

1 + N

∣∣∣∣
2

. (13)

Note that Ref. [73] and the website, Ref. [74], write an equation
for the refractive index of a monatomic solid:

N = 1 − nr0λ
2

2π
(f1 − if2), (14)

with r0 = e2/mc2 the classical radius of the electron and λ =
2πc/ω the wavelength. This is clearly the first term in an
expansion of N = √

ε. So the second adjustment made for
this work is to compute the dielectric function from f using

Eq. (11), take the square root to obtain N , and then use Eq. (13)
for the reflectance.

Note also that many other sets of atomic scattering
functions have been reported [74,98–104] in addition to the
results in Ref. [73]. In general the functions are similar at
energies where they overlap; the newer sets often provide finer
energy resolution near sharp features in the spectrum. One
consequence is that, unlike the Henke functions, many are not
sampled at the same photon energies, requiring the user to
devise interpolation schemes when evaluating Eq. (11).

B. Implementation

The procedure is implemented in the following way.
The user supplies the chemical formula, such as Ag or
La1.85Sr0.15CuO4 and either the appropriate [88] volume Vc

or the density ρ. With this information, the reflectance R
will be calculated at 340 logarithmically spaced points over
80 000–2.4×108 cm−1 (10–30 000 eV) using Eqs. (11)–(13).

A bridge must be placed over the gap between the highest
experimental point (say, 40 000 cm−1 or 5 eV) and the
beginning of the extrapolated reflectance at 80 000 cm−1. The
user has the option of a power series in ω, in 1/ω ∝ λ, or a
cubic spline [105]. As it turns out, the bridge has a modest
effect in some cases, minimal in others.

A low-frequency extrapolation, from, say, 40 cm−1 (5 meV)
to zero, must still be added. I find it effective to fit accurately the
low-frequency reflectance to a Drude-Lorentz or other (well-
motivated) model and calculate the low-frequency reflectance
from the model.

Then, the Kramers-Kronig integral, Eq. (9), is computed to
obtain the phase. The refractive index can then be calculated
from reflectance and phase through Eq. (4), with other optical
constants following in the usual way.

C. Silver metal

To start, I will explore the use of the atomic scattering
functions to analyze the reflectance data of Fig. 1 (main
panel). The scattering function f for silver is used to calculate
the reflectance in the uv–x-ray region. Figure 6 shows only
the beginning of the uv–x-ray reflectance calculated from the
x-ray scattering functions; the entire calculated R extends to
30 000 eV, continuing to fall approximately as 1/ω4, with some
fine structure. The measured high-frequency reflectance [85]
also is shown, along with a power-law bridge between the
infrared–uv data and the beginning of the x-ray calculation.
The calculated reflectance follows experiment reasonably
well, although it is higher at the beginning and lower in the
2 × 105–106 cm−1 (25–120 eV) region. The strong structure
around 3 × 106 cm−1 (400 eV) appears, although broader than
experiment.

My goal, of course, is to use the scattering-function re-
flectance for Kramers-Kronig extension, not to extract accurate
uv–x-ray reflectance. The conductivity obtained by Kramers-
Kronig analysis using the scattering function extension is
shown in Fig. 7. Twelve curves are shown for twelve variations
of the bridge function: power laws of

∑n
0 anω

n with n varying
from 1 (straight line) to 5 and power laws of

∑n
0 bnω

−n with
n varying from 1 to 7. Finally, a curve for the full data is also
shown. There is no significant difference among the results.
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FIG. 6. (Color online) Reflectance of silver over 1–107 cm−1

(1–1200 eV) showing the typical experimental region (40–
40 000 cm−1), data in the vacuum-ultraviolet and soft x-ray re-
gion [85], the reflectance calculated from the Ag scattering function,
and the power-law bridge over 40 000–80 000 cm−1 (5–10 eV).

All of the bridge functions give conductivity spectra basically
indistinguishable from the result from the full data. There is a
small deviation in a couple of cases above 35 000 cm−1, which
I regard as not really significant.

Figure 8 shows that the result for the partial sum rule is
equally good. Any of the bridge functions would support the
notion that there is about one free electron per silver atom.

D. La2−xSrxCuO4

That this result is not unique to a free-carrier metal is evident
when I repeat the exercise for La1.85Sr0.15CuO4 [32,89].
This material is a good test of the method, because, as
shown in the upper panel of Fig. 9, the slopes of the data

FIG. 7. (Color online) Optical conductivity of silver from
Kramers-Kronig analysis of reflectance. An x-ray scattering-function
extrapolation with 12 different bridge functions (described in the text)
was used. The conductivity from Kramers-Kronig analysis of the full
data set is also shown. The differences are inconsequential; all 13
curves are superposed.

FIG. 8. (Color online) (m/m∗)Neff (ω) of silver from Kramers-
Kronig analysis of reflectance using x-ray scattering-function extrap-
olation with 12 different bridge functions (described in the text). The
partial sum rule for the full data is also shown.

FIG. 9. (Color online) Reflectance (at 300 K) of
La1.85Sr0.15CuO4. The upper panel shows the data of Gao
et al. [32] and the reflectance calculated from the x-ray scattering
functions. The bottom panel shows the data and scattering-function
reflectance again, along with 5 bridges, as described in the text. The
actual uv reflectance [89] is also shown.
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FIG. 10. (Color online) Optical conductivity (at 300 K) of
La1.85Sr0.15CuO4. Scattering-function extensions were used, with a
variety of power law in ω bridge functions spanning the gap be-
tween measured and scattering-function extension. The conductivity
obtained using the full-range data, including the vacuum-ultraviolet
region [89], is also shown.

at the high-frequency limit, which is about 37 000 cm−1

(4.6 eV), are positive, whereas the slope of the scattering-
function reflectance at its low-frequency limit, which is about
80 000 cm−1 (10 eV), is negative. Hence the bridge must
provide this slope change.

Several trial bridge functions are shown in the bottom panel.
Four used power laws in ω, R = ∑n

0 Anω
n with the upper

limit ranging from 3 to 6. A bridge employing a cubic spline
function is also shown. All accomplish the goal of joining
the two regions, with some above and some below the actual
uv reflectance [89], which also is shown. The agreement
between the scattering-function-derived reflectance and the
actual reflectance is not as good as in the case of Ag. However, I
am not that interested in the accuracy of the scattering-function
reflectance in the vacuum uv and x-ray region; instead I will
use it as an extension in the Kramers-Kronig analysis of
infrared–uv reflectance. The outcome of the Kramers-Kronig
analysis is shown in Fig. 10. Above the highest measured
or calculated point, the reflectance was extended as 1/ω4.
Below the lowest measured frequency, it was extended with a
Drude-Lorentz fit.

As opposed to the results of using power-law extensions
in the intermediate region, which were shown in Fig. 5, the
scattering-function extension is quite close to the conductivity
obtained using actual vacuum-ultraviolet data. In particular,
the conductivity through the important charge-transfer band
around 12 000 cm−1 (1.5 eV) is almost independent of bridge
function and is very close to what is found using actual
data. Evaluation of the partial sum rule, Eq. (10), works the
same way; the curves are nearly indistinguishable below about
16 000 cm−1 (2 eV). Of the various bridge functions, the cubic
spline [105] appears to be closest to the result using the full
data (Gao and Tajima) [32,89]. The two extremes used cubic
(high) and quartic (low) power laws in ω; carrying the series

FIG. 11. (Color online) Reflectance of aluminum
[10,12,14,85,107]. The main panel shows the reflectance from
far infrared to near ultraviolet, whereas the inset shows the
vacuum-ultraviolet and soft x-ray reflectance.

to more terms made little difference and neither did the use of
power laws in 1/ω.

E. Aluminum

As a final example, let me discuss the use of this method
for Al metal. A trivalent metal, Al has its plasma edge deep
in the vacuum ultraviolet, around 120 000 cm−1 (15 eV). This
energy is well beyond the reach of most conventional optical
spectroscopy laboratories. Nevertheless, one might study Al
(or similar wideband, high-carrier-density solids) in order
to probe low-energy features, such as the weak interband
transition that occurs in the infrared [106,107]. The far-
infrared–ultraviolet reflectance spectrum [10,12,14,85,107] of
Al is shown in Fig. 11. The main panel shows data from 70
to 50 000 cm−1 (0.01–6.2 eV), whereas the inset shows the
vacuum ultraviolet and x-ray reflectance up to 6 × 106 cm−1

(800 eV). Were I to have only the low energy data of the main
panel, I would have a difficult time with the Kramers-Kronig
analysis. I would suspect that the high reflectance did not
continue indefinitely but would not a priori know when or
how to start it decreasing. If I were to use a power law for
the reflectance, R ∼ 1/ωn, transitioning to R ∼ 1/ω4 at a
considerably higher frequency and continuing this free-carrier
extension to infinity, I would obtain the curves shown in
Fig. 12.

The upper panel shows the effect of varying the exponent in
the midregion from zero (a nearly flat extension, as suggested
by the data) to 4. The transition to R ∼ 1/ω4 was made at
106 cm−1 (125 eV). The Kramers-Kronig-derived conduc-
tivity from the full-range reflectance (which is displayed in
the inset to Fig. 11) is also shown. Most of the derived
curves seriously overestimate conductivity, making the spec-
tral weight in both the free-carrier conductivity and the weak
interband transition far too large. The location of the maxi-
mum of this transition is pushed up in the small exponent
calculations, reaching 16 000 cm−1 (2 eV) compared to
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FIG. 12. (Color online) Optical conductivity of aluminum from
Kramers-Kronig analysis of reflectance. In the upper panel, power-
law extensions were used, with exponents 0 < s < 4 and a crossover
to R ∼ ω−4 at 106 cm−1 (125 eV). In the lower panel, a constant
reflectance was used, up to a changeover frequency 100 000 < ωa <

500 000 cm−1, above which R ∼ ω−4.

12 500 cm−1 (1.55 eV) in the conductivity derived from the
full-range data. Note that the weak exponents (which are
implied by the data) give the poorest results. An exponent
of around 2.5, which is in no way suggested by the data, gives
a conductivity spectrum close to that returned by using the full
reflectance spectrum.

One could argue that transitioning to R ∼ ω−4 at 106 cm−1

(125 eV) is not correct; the full reflectance spectrum turns over
at 120 000 cm−1 (15 eV). The lower panel of Fig. 12 shows
conductivity spectra obtained by extending the reflectance
as a constant value up to a frequency ωa where it changes
to R ∼ ω−4. The changeover frequency was in the range
100 000 < ωa < 500 000 cm−1 (12–60 eV); above this fre-
quency R ∼ ω−4. All of the curves overstate the magnitude of
the conductivity, even the one where the reflectance decrease
starts at 100 000 cm−1 (12 eV), below the 150 000 cm−1

(19 eV) where the experimental edge exists. Note that the
initial power-law behavior of the reflectance edge (inset to
Fig. 11) is approximately ω−9.

Presented with the spectra in Fig. 12, I would decide that
Kramers-Kronig analysis of the reflectance in the main panel
of Fig. 11 cannot be productive. However, use of the x-ray
scattering function helps immensely. The relevant curves are
shown in Fig. 13.

At first blush, the calculated reflectance from the scattering
functions does not look promising. Because there is no band

FIG. 13. (Color online) Reflectance of aluminum over
1–200 000 cm−1 (1–25 eV), showing the typical experimental
region (40–50 000 cm−1), data in the vacuum-ultraviolet and soft
x-ray region [85], the calculated reflectance using the Al scattering
function, and two cubic spline bridges, one over 50 000–80 000 cm−1

(6.2–10 eV) and one over 50 000–130 000 cm−1 (6.2–16 eV).

structure, only atomic orbitals, there is no metallic reflectance;
instead a strong peak occurs around 130 000 cm−1 (16 eV)
with a reflectance edge blueshifted from the experimental
data (the dashed line). At the low end, 80 000 cm−1 (10 eV),
the scattering-function reflectance falls to about 1/3 of the
metal’s reflectance. I consider two approaches to the use of
this extension. First, I can just use it, with a short, steeply de-
clining bridge joining the “IR data” to the scattering-function
extension. Second, I can lop off the low energy part of the
extension, and bridge to the maximum around 130 000 cm−1

(16 eV), making the smallest change in reflectance between
data and extension. Surprisingly, both approaches give rather

FIG. 14. (Color online) Optical conductivity of aluminum from
Kramers-Kronig analysis of reflectance. An x-ray scattering function
extrapolation with cubic spline bridge functions (described in the
text) was used. The conductivity from Kramers-Kronig analysis of
the full data set is also shown (dashed line).
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similar optical conductivity curves (and sum rule results), as
shown in Fig. 14.

The short bridge falls a little bit below the conductivity
obtained from the full set of data, while the long bridge is
a bit above. I could use either (or their average) to discuss
the low-frequency electronic structure of aluminum without
being plagued by extrapolation-dependent results. That the
scattering-function extrapolation works as well as it does
suggests that the critical issue in designing the extrapolation is
to use one that gets the correct high-energy spectral weight for
the material and then places that spectral weight appropriately
in energy. The remaining details are not important.

IV. CONCLUSIONS

The use of reflectance calculated from a dielectric function
constructed from a sum of atomic scattering functions for
a material provides a reliable and reproducible method of
extrapolating measured data. It removes a certain amount of
arbitrariness in the use of Kramers-Kronig analysis.

In addition to testing with data where the uv–x-ray spectra
are known, this extrapolation has been used in a number of
recent studies [53,108–110]. A comparison with a method
that uses ellipsometry in the near-infrared–ultraviolet to
constrain the extrapolation [71] gave conductivity spectra
indistinguishable from those of Figs. 7 and 10. For Al,

the ellipsometry-based method gave a slightly (5%) higher
conductivity over the entire range; the difference was about
the same as that between the two bridge versions in Fig. 13.

Persons who wish to test the approach will find a Windows
program to compute the reflectance in the uv–x-ray region,
the Kramers-Kronig routine that uses the extrapolation and
generates the bridge function, and a program that computes
optical constants from reflectance and phase at the website in
Ref. [111]. Use xro.exe to generate the file for extrapolation,
kk.exe to do the Kramers-Kronig integral, and op.exe to
calculate optical functions. Note that to avoid having 2π

swings in the phase when its value is close to φ = −π and
there is noise, the kk.exe and op.exe programs respectively
compute and use θ = φ + π . See the discussion in Ref. [83].
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